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Prediction using Numerical Simulations, A Bayesian Framework for Uncertainty
Quantification and its Statistical Challenge

James Glimm, Yunha Lee, Kenny Q Ye
Department of Applied Math and Statistics

SUNY at Stony Brook
Stony Brook, NY 11794-3600
kye@ams.sunysb.edu

Abstract

Uncertainty quantification is essential in using numeri-
cal models for prediction. While many works focused on
how the uncertainty of the inputs propagate to the outputs,
the modeling errors of the numerical model were often over-
looked. In our Bayesian framework, modeling errors play
an essential role and were assessed through studying nu-
merical solution errors. The main ideas and key concepts
will be illustrated through an oil reservoir case study. In this
study, inference on the input has to be made from the output.
Bayesian analysis is adopted to handle this inverse problem,
then combine it with the forward simulation for prediction.
The solution error models were established based on the
scale-up solutions and fine-grid solutions. As the central
piece of our framework, the robustness of these error mod-
els is fundamental. In addition to the oil reservoir computer
codes, we will also discuss the modelling of solution error
of shock wave physics. Although the framework itself is sim-

ple, there is many statistical challenges which include opti-
mal dimension of the error model, trade-off between sample
size and the solution accuracy. These chaIIenges are also
discussed.

1 Introduction

One purpose of building complicated numerical models
is to forecast outcomes of complex systems such as climate
change, hydrocarbon reservoir production, contamination
of groundwater and shock wave physics. However, a scien-
tific prediction must be coupled with a good uncertainty as-
sessment. Recently, uncertainty quantification (UQ) of nu-
merical models has drawn significantly increased attention
from several international scientific communities as well as
government agencies.

The uncertainty of a numerical simulation comes from

David H Sharp
Los Alamos National Laboratory
Theoretical Division, Mailstop B285
Los Alamos, NM 87545
dhs@lanl.gov

three different sources, the errors in the physical model, the
errors in the numerical model, and the uncertainty on the
input parameters of the model.

The uncertainty on the input parameters includes the re-
sult of the difficulty in measuring corresponding parameters
in the physical system. For example, the permeability and
porosity of a petroleum reservoir could not be accurately
measured with today’s technology. ‘In numerical simula-
tion, uncertainty of the input parameters of a model gives

" rise to uncertainty regarding its output. This propagation

of uncertainty from input to the output has been the main
focus of UQ research. A variety of sophisticated statisti-
cal and probability methods have been developed and some
have been implemented into software packages[6]. In addi-
tion, sensitivity analysis has also been apphed to thlS aspect
of UQ inference[18].

The error of a numerical model comprise solution er-
rors and modelling errors. The solution errors are the result
of a finite accuracy approximation to the governing equa-
tions describing continuum phenomenon. The modelling
errors could be due to approximations in the equations and
the physics they represent. Incorrect choice of the physical
models give rise to the errors in the physics model. For ex-
ample, a fault lies in an oil reservoir but is not represented
in the model. Assessing both type of modelling errors is
often referred to as model validation[5, 14}, which is ar-
guably the most important and most challenging component
in UQ. This has to be done through systematic comparison
between experimental and observational data, and compar-
ison among competing models.

We have proposed a Bayesian: framework for UQ
inference[12, 13, 4, 8]. Our focus is distinct from the other
UQ research in several aspects. First, our approach is moti-
vated by petroleum engineering applications in which im-
portant parameters of the petroleum reservoir are not di-
rectly observable and have to be inferred through an inverse
problem. Similar situations exist in many other applications
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including shock wave physics. Second, practically the in-
verse problem can be solved only with coarse grid simula-
tions on a large ensemble sampled in the parameter space.
Therefore, solution errors plays a big role in the uncertainty
quantification.

We believe that different UQ approaches complement
each other and each provides a unique view on some aspects
of this challenging problem. Together they provide a com-
plete picture. In this paper, we will discuss first a Bayesian
Framework for UQ inference, then three statistical aspects
in our UQ approach:

1. probability models of the solution errors, which is at
the core of our approach;

2. partition of uncertainty to all substeps, which provide
guidelines for improving prediction accuracy;

3. efficient sampling of ensembles.

2 A Bayesian UQ inference Framework

Our Bayesian UQ inference includes two equally impor-
tant steps. The first is the inverse problem. In this step,
the uncertainty of the model parameters that are not directly
observable, are reduced using other observations. This is
achieved by running forward simulations on an ensemble
sampled from the parameter space, then assign posterior
probabilities to each element of the ensemble. The better
a solution matched up with the observations, the parame-
ter setting used for this solution receives higher probability.
The posterior probability is assigned with Bayes’ formula,

P(Olm)p(m)
S P(Olm)p(m)

where M and m represent the entire ensemble and one of
its elements. The factor P(O}m) is the likelihood which
measures how the observed data O matches with the solu-
tion of m. The factor P(m) is the prior probability on the
ensemble which is often set to be flat. However, the ensem-
ble can be sampled from a probability distribution that re-
flects the current knowledge on the parameter space. Using
(1), the ensemble is refined in the sense that the probability
concentrates on a small fraction of its elements and the re-
maining majority have only negligible probabilities. Figure
1 illustrates this idea through an oil reservoir model studied
in Devolder et al.[4]. The top of the figure are 500 solutions
of the entire ensemble sampled from a random field describ-
ing the geology of an oil reservoir. The bottem shows only
those solutions that better match with observed history data.
This inverse step is often referred to as “calibration” or “his-
tory matching” by other authors[16, 15]. However, it differs
from “calibration” of the traditional sense. Traditional cal-
ibration finds a single parameter setting that best matches

P(m|0) = M

the observed data. In this inverse step, the parameter space
is only “confined” by the observations but never reduce to a
point mass. A reality of this step is that the forward simula-
tion have to be done on relatively coarse grids because one
can not afford fine grid solutions on the entire ensemble.

The second step in our UQ inference is the forward step,
in which the numerical simulation extends to the future only
on the refined ensemble. Note that the ensemble can now
be replaced by a subensemble, i.e. an one that with less el-
ements, numerical simulations can be done on finer grids
than in the inverse step. The posterior distribution of the
prediction is a product of the probability distribution of the
ensemble and the probability distribution of the simulation
error. This posterior distribution fully characterize the pre-
diction and its uncertainty, and provides confidence inter-
vals for the prediction.

In the core of our UQ inference framework is a probabil-
ity mode] for numerical simulation errors which produces
the likelihood p(O]m) in (1). Without an appropriate un-
derstanding of these errors, the inverse step will be ill fated.
One would have no meaningful way to assess how the ob-
served data matches with the numerical solutions, ending
up with either “under calibrated” model, giving overly pes-
simistic uncertainty assessment, or “over calibrated” model,
giving overly optimistic uncertainty assessment.

A similar Bayesian approach has been proposed and ap-
plied by others to petroleum engineering applications[2, 17,
15, 1]. In these works, the numerical error is often replaced
by an “observational” error, which is then postulated with
little scientific basis. In the next session we will provide a
scientific basis for the error models and likelihoods being
used in the analysis.

3 Probability Model of Solution Errors

The inverse step in our Bayesian UQ inference relies on
a probability model to calculate the likelihood p(O}m) in
(1). Ideally, this probability model should account for the
solution errors, the modelling errors and the observational
errors. Among the three, modelling error is the most dif-
ficult to be assessed. One needs to compare results from
physical experiments with numerical solutions, which can
only be done under limited controllable experimental con-
ditions and are very expensive[5]. A number of authors has
proposed and applied a similar Bayesian inference frame-
work to quantify uncertainties of numerical simulation pre-
dictions [15, 17, 2, 16, 3, 1]. Although the importance of
such a probability error model are fully recognized, they ei-
ther use subjective models “elicited by experts”[3], or disre-
gard it completely but focus on statistical modelling of the
output [16]. In general, the likelihood p(O}m) is obtained
using postulated error models without further justification.



Figure 1. A full ensemble and a refined en-
semble after “history matching”

Our approach to build such a probability error model is
based on observation errors and solution errors. The latter
can be observed by comparing the numerical solutions to
more accurate numerical solutions. We think that in many
applications it is the only practical way to make physically
meaningful and objective assessment of the simulation er-
ror, Theoretically, the simulation error can be evaluated by
comparing the simulation results with observed data. How-
ever, this is only possible when the values of all physical
parameters describing the real system are well known. For
complex systems, such cases rarely exist. For example,
obtaining the exact geology parameters of an oil reservoir
is practically impossible. Additional, in our UQ inference
framework, a large ensemble from the parameter space is
sampled for the inverse problem, and numerical solutions
are obtained for each parameter settings in the ensemble.
For complex systems, the simulations on the entire ensem-
ble has to be done on coarse grid due to constrains on the
computational resource. The use of the coarse grid solu-
tion will make the solution errors account for a large pro-

portion of the total simulation error. This situation will
remain true even as the computing power improves in the
future, because the complexity of future numerical model
will increase in the same pace as the computing power al-
lows. However, one can afford to do both the coarse grid
and the fine grid solutions on a small sample of the param-
eter spaces to evaluate the solution errors.

Since fine grid solutions are resource consuming, the er-
ror models have to be constructed from a sample with lim-
ited size. This has two implications. First, although the out-
put is often high dimensional, error models must be simple
and effective with low dimensionality. Second, uncertainty
due to the finite sample size has to be assessed. Both issues
have to be thoroughly studied. In our previous work[9], the
effect of finite sample size can be handled by the Wishart
distribution for Gaussian error models. However, the com-
plexity of the error models is determined in ad hoc manners.
Two questions should be answered:

e What is the optimal choice of the error model dimen-
sionality and how can the dimension reduction to be
achieved?

o Is the Gaussian error models robust when the Gaussian
assumption is violated?

Regarding the second question, the effect of finite sample
size could be studied using re-sampling methods, when the
error is non-Gaussian.

4 Transferrable Error Models in Shock Wave
Physics

As discussed above, brutal force computing is needed to
establish quality error models. Such brutal force may not al-
ways available for the most complicated problem and may
not allowed in situations that require quick analysis. There-
fore, it is very important to study the transferability of er-
ror models from relatively elementary problems to complex
problems. The errors in a complex system can be viewed
as composition of errors arising from repeated, but elemen-
tary processes. One of our ideas is to fist develop the error
models in a simple context then transferred to a related but
more complex context. Because the simple models will be
transferred across a series of related contexts, they can be
used without reparameterization once verified. This idea,
however, must be developed, refined and validated before it
can be used.

We have test this idea in 1D shock wave physics
models[7]. Shock waves are localized structures, and lie
on surfaces in 3D. The interactions, i.e. crossing with one
another or with fluid or material surfaces occur on lines, and
the bifurcations, or modification of the interaction structures
occur at isolated points in space, moving along curves in




space-time. These idealized structures are solved by shock
Hugoniots and their interactions are given by solutions of
Riemann problems and shock polars. Since Riemann prob-
lems and shock polars are basic ingredients in more com-
plex shock wave physics problems, their errors can be used
to build error models of those complex systems. Several

 idealized shock wave interaction problems were studied.

We start with a statistical approximation of the error in
a given Riemann problem Rq using multinomial expansion
associated with initial waves and errors located inside its
domain of dependence. For a 1D shock wave interaction
problem, think of the solution as being primarily composed
of localized waves, interacting through Riemann problems
and generating outgoing waves, that further interact in the
same manner. Each wave w is described by a vector v,, that
records its strength, location in state space, speed and start-
ing location and time, and the errors or uncertainty associ-
ated with these quantities. The interaction of waves gen-
erates a planar (1D space and time) graph, the vertices of

_ which are the Riemann problems and the bonds are the trav-

eling waves, between Riemann problem interactions. Start-
ing from a given Riemann problem (vertex) or wave (bond),
we can trace backward and determine its domain of depen-
dence. Call this graph G.

For each Riemann problem, we consider three types of
vertices, corresponding to the constant, linear and bilinear
terms in the multinomial approximation of solution and er-
ror terms. See [7] for details. The linear terms allow a sim-
ple propagation law,

SL = /'w(t = 0)dw, )

where w(t = 0) is a vector representing the strength of the
time zero wave and its error or uncertainty, evaluated at the
beginning of the path w, and S, is the purely linear prop-
agation contribution to a final time error. The path space
integral dw is taken over all paths progressing in time order
through G from the initial time to the final vertex, with each
term weighted by the appropriate linear factors from the for-
mula for the approximate solution of the Riemann problems
transversed. This path space representation makes evident
the point that the solution Sf, is that of a multiple (linear)
scattering problem. .

The amplitude S at the final time (vertex of G) can sim-
ilarly be thought of as a solution of a nonlinear multiple
scattering problem, leading to a representation in terms of
multipath integrals. Let V = V(G) be the set of vertices of
G, and let B C V be a subset of V where constant or bilinear
terms occur. The total amplitude S will then be a sum over
terms Sp indexed by B. For each v € B, let I, be the the
interaction coefficient obtained for basic riemann problems.

¥ 3
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Figure 2. The solution and its errors at the
point (z,t) can be obtained by “adding up”
the solution and errors for the waves within
the domain of dependence

We write
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Here dwp is a multipath integral over all multipaths. The
multipath propagator dwp is a product of the individual
propagators w for each single path, as in (2). The summa-
tion in (3) can be understood schematically as the sum over
all events within the domain of dependence of the evalua-
tion point (z, t) at the vertex of G. See Fig. 2.

The composition law (3) has been validated on several
idealized composite interaction problems. It shows some
promise of developing transferable error model for less ide-
alized problems. More detailed modelling on the errors
need to be done for more accurate error models.

5 Decomposition of the Uncertainty

Once a framework to quantify the uncertainty of predic-
tion has been established, it is important to know the con-
tribution of each component in the prediction uncertainty.
Knowing the relative importance of each components will
help us in improving the accuracy of a prediction.

The uncertainty of a prediction under our Bayesian
framework arises from the following sources:

o forward simulation errors in the forward step
e uncertainty of the geology
o the sparsity of the observed real data

o forward simulation error in the inverse problem




o limited size of the ensemble in the inverse problem

e inadequacy of the error model resulted from limited
sample size in the inverse problem

A breakup of total uncertainty to individual sources will
provide guidelines for optimal distribution of resources to
improve prediction accuracy. For example, should addi-
tional research effort be spend to develop more accurate nu-
merical models or more advanced measuring systems for
better observations; should the inverse problem be done us-
ing a large ensemble with coarse solutions or a smaller en-
semble with finer solutions.

We have developed some statistical methods for parti-
tion of prediction uncertainty with an idealized oil reser-
voir model[11]. The idealized Darcy and Buckley-Leverett
equations

v=—-KAVp; V-v=0
ss+v-Vf=0

are solved for a total seepage velocity v and oil saturation
s. Here K = K(z,z2) is the random total permeability, A
the relative transmissivity and f the fractional flux. See also
{8, 10] for a more detailed specification of the simulations.
We model the real problem by selecting a particular geol-
ogy K, as the “correct” one. We assume that the actual
geology is not observed and only the oil cut (oil to water
ratio) s(t) until present time T is observed. The goal is
to predict the future oil production [ final time ¢ (1)dt. To ap-
ply our Bayesian UQ framework, simulations are performed
on an ensemble with varied viscosity ratio v and perme-
ability fields K to observe the oil cut s;(t), as shown in
the top graph of Figure 1. The solution error models are
based on difference of arrival time between the fine grid so-
lution and coarse grid solution. Its degree of freedom are
reduced to five, the breakthrough time and the incremental
elapsed time at oil cut levels of 0.8, 0.6, 0.4, and 0.2. That
is A(t;) = t(S;) — t(Si—1), where

t(S) = sgp{S(t) > Si}, @

and §; = 1-0.2:-1, 0 <1 < N,and A(Sp) = £(Sp). Thus,
the errors to be modelled are e(S;) = Af(Si) — Ac(Sy),
where As and A represents the fine and coarse grid solu-
tion.

Here we briefly describe a method to partition the total
uncertainty into four different components. For details, see
[11]. First, we approximate o'geo, uncertainty inherited from
uncertainty of the geology and due to insufficient observed
data, by the following method. The posterior is determined
by fine grid solutions, using the windowing method, while
the future is also simulated using the fine grid. We aver-
age the prediction errors over an ensemble to estimate 02.

Then we obtain an estimate of o2, by RMS difference be-
tween g2, and.the prediction errors of using coarse grid
solution for the inverse step and fine grid for the forward
step. Subsequently, we obtain an estimate of o2, ; by RMS
difference between o2, + of,, and the prediction errors
of using coarse grid solution for both inverse and forward
steps Finally, we obtain 02, by RMS difference between

02, + 0k, + 0,4 and the prediction errors of using coarse
grid solution for both steps and a statistical approximation
of the error model.

We found that a dominates the other three compo-
nents and 02, contnbutes a little. This suggests that the
inverse step does not sufficiently reduce the uncertainty on
the geology because of the sparsity of the observed data.
The observed data does not contain enough information for
the inverse inference on the parameter space. Therefore,
within the model assumptions used in the present study, ef-
forts should be made to either gather more on the geology
itself or collect other information that lead to better infer-
ence on the geology, if one would like to significantly im-
prove the accuracy in prediction. On the other hand, a more -
adequate probability error models does not result much im-
provement on the prediction but it is the cheapest to do. We
also found that solution errors in the forward step contribu-
tion more than the solution errors in the inverse step. This
suggests use fine grid simulation in the forward step and
coarse grid solution in the inverse step.

Although we developed the method on an oil reservoir
model, they should be applicable to any applications that fit
into our UQ inference frameworks. Of course, the relative
importance of each components will not remain the same.
Methods to further decompose 02, and o2, will be devel-
oped in the future. Formal statistical inferences will also
be developed for estimation of each components. Based on
the reliable methods for partition, one could study the nec-
essary size and solution accuracy for the ensemble, and the
necessary complexity and sample size for the error model.

6 Sampling Methods of Ensembles

In the inverse step of our UQ inference framework, an
ensemble is sampled from the parameter space and their so-
lutions are matched with the observed data. The quality of
the ensemble is an important factor in the final prediction
uncertainty. If all elements in the ensemble are far from
the real parameters of the physical system, then the predic-
tion is doomed to be poor. However, given a fixed amount
of computational resources, deeper sampling in the param-
eter space is only possible with solutions on coarser grid. A
challenge in our UQ framework is to find the delicate bal-
ance between the size of the ensemble and the quality of the
solutions.

In our previous works, the ensembles are obtained us-




ing simple random sampling methods from a random field.
It is conceptually simple but may not be the most effi-
cient. Other sampling methods and their combinations de-
serve further investigation. Latin hypercube sampling gen-
erates ensembles that spread more evenly in the parame-
ter space. Experimental design methods could also be used
to refine the parameter space for more effective sampling,
which might be necessary for large system with a lot of pa-
rameters. In real application, some directly information on
the parameter space might be obtained. For example, some
rock sample are obtained for an oil reservoir. In those cases,
sampling methods that obtain samples consistent with those
information need to be developed. Another alternative is
to directly sample from the posterior using Markov Chain
Monte Carlo method, as proposed by Oliver et al.[17, 2].
However, using MCMC methods alone might be too slow
for large problems. But all of these choices need to be care-
fully compared and anyone of them might be more efficient
than others in some situations.

7 Conclusion

In this paper, we presented a Bayesian UQ framework
for predictions using numerical models. What is essential
to this framework is a probability model for the simulation
errors. Our approach is to formulate the model based on
solution errors. An important idea for build a robust er-
ror model is transferrability, which allows us to build er-
ror model of a complex problem from the error models of
its simpler components. Another challenge for error mod-
els, which are build based on finite samples, is to determine
its dimensionality. Methods to partition the the total un-
certainty into several components is also important. They
provides foundations for optimal allocation of the resources
to reduce the prediction uncertainty. Many works need to
be done in these areas.
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